
Frequent pattern mining 

Frequent pattern mining in data mining is the process of 
identifying patterns or associations within a dataset that 
occur frequently. This is typically done by analyzing large 
datasets to find items or sets of items that appear together 
frequently. 

different algorithms used for frequent pattern mining, 

1. Apriori algorithm: This is one of the most 
commonly used algorithms for frequent pattern 
mining. It uses a “bottom-up” approach to identify 
frequent itemsets and then generates association 
rules from those itemsets. 

2. ECLAT algorithm: This algorithm uses a “depth-
first search” approach to identify frequent 
itemsets. It is particularly efficient for datasets 
with a large number of items. 

3. FP-growth algorithm: This algorithm uses a 
“compression” technique to find frequent patterns 
efficiently. It is particularly efficient for datasets 
with a large number of transactions. 

4. Frequent pattern mining has many applications, 
such as Market Basket Analysis, Recommender 
Systems, Fraud Detection, and many more. 

Advantages: 

1. It can find useful information which is not visible 
in simple data browsing 



2. It can find interesting association and correlation 
among data items 

Disadvantages: 

1. It can generate a large number of patterns 
2. With high dimensionality, the number of patterns 

can be very large, making it difficult to interpret 
the results. 

  

Frequent item set 
A frequent item set is a set of items that occur together 
frequently in a dataset. The frequency of an item set is 
measured by the support count, which is the number of 
transactions or records in the dataset that contain the item 
set. For example, if a dataset contains 100 transactions 
and the item set {milk, bread} appears in 20 of those 
transactions, the support count for {milk, bread} is 20. 

the min sup threshold, a hyper-parameter with high importance, which has to be 

set carefully by the user according to their expectations of the results: 

• Setting it to a very low value would give a large number of itemsets that would 
be too specific to be considered “frequent”. These itemsets might apply in too 

few cases to be useful. 
 

• On the other hand, very high values for min sup would give a small num- 
ber of itemsets. These would be too generic to be useful. Thus, the resulting 

information would probably not represent new knowledge for the user. 

Another important aspect of the min sup value is whether the number of 

frequent itemsets that results is small enough for subsequent analysis.  

 

 

 



 

 

 

 

 

Apriori 

Apriori is an algorithm for frequent item set mining and association rule 
learning over relational databases. It proceeds by identifying the frequent 

individual items in the database and extending them to larger and larger 

item sets as long as those item sets appear sufficiently often in the 

database. 

Algorithm Apriori.  

1: INPUT  the transactional dataset 
2: INPUT min_sup the minimum support threshod 

3: Set k = 1 

4: Set stop = false 

5: repeat 



6: Select all frequent itemsets of length k (with support at least min_sup) 

7: if there are no two frequent itemsets of length k then 

8: stop = true 

9: else 

10: Set k = k + 1 

 11: until stop 

Components of Apriori algorithm 

The given three components comprise the apriori algorithm. 

1. Support 

2. Confidence 

3. Lift 

Support 

Support refers to the default popularity of any product. You find 

the support as a quotient of the division of the number of 

transactions comprising that product by the total number of 

transactions. Hence, we get 

Support (Biscuits) = (Transactions relating biscuits) / (Total 

transactions) 

= 400/4000 = 10 percent. 

Confidence 

Confidence refers to the possibility that the customers bought both 

biscuits and chocolates together. So, you need to divide the 



number of transactions that comprise both biscuits and chocolates 

by the total number of transactions to get the confidence. 

Hence, 

Confidence = (Transactions relating both biscuits and Chocolate) / 

(Total transactions involving Biscuits) 

= 200/400 

= 50 percent. 

= 400/4000 = 10 percent. 

Lift 

Consider the above example; lift refers to the increase in the ratio 

of the sale of chocolates when you sell biscuits. The mathematical 

equations of lift are given below. 

Lift = (Confidence (Biscuits - chocolates)/ (Support (Biscuits) 

= 50/10 = 5 

The Apriori Algorithm makes the given assumptions 

o All subsets of a frequent itemset must be frequent. 

o The subsets of an infrequent item set must be infrequent. 

o Fix a threshold support level. In our case, we have fixed it at 

50 percent. 

Advantages of Apriori Algorithm 

o It is used to calculate large itemsets. 



o Simple to understand and apply. 

Disadvantages of Apriori Algorithms 

o Apriori algorithm is an expensive method to find support since 

the calculation has to pass through the whole database. 

o Sometimes, you need a huge number of candidate rules, so it 

becomes computationally more expensive. 

ECLAT algorithm 

The ECLAT algorithm stands for Equivalence Class 
Clustering and bottom-up Lattice Traversal. It is one of the 
popular methods of Association Rule mining. It is a more 
efficient and scalable version of the Apriori algorithm. While 
the Apriori algorithm works in a horizontal sense imitating 
the Breadth-First Search of a graph, the ECLAT algorithm 
works in a vertical manner just like the Depth-First Search 
of a graph.  

Advantages over Apriori algorithm:- 
1. Memory Requirements: Since the ECLAT 

algorithm uses a Depth-First Search approach, it 
uses less memory than Apriori algorithm. 

2. Speed: The ECLAT algorithm is typically faster 
than the Apriori algorithm. 

3. Number of Computations: The ECLAT algorithm 
does not involve the repeated scanning of the 
data to compute the individual support values. 

 

 

https://en.wikipedia.org/wiki/Association_rule_learning


 

 

FP Growth Algorithm? 

The FP-Growth Algorithm is an alternative way to find frequent 

item sets without using candidate generations, thus improving 

performance. For so much, it uses a divide-and-conquer strategy. 

The core of this method is the usage of a special data structure 

named frequent-pattern tree (FP-tree), which retains the item set 

association information. 

 

This algorithm works as follows: 

o First, it compresses the input database creating an FP-tree 

instance to represent frequent items. 

o After this first step, it divides the compressed database into 

a set of conditional databases, each associated with one 

frequent pattern. 

o Finally, each such database is mined separately. 



 


