
Frequent pattern mining

Frequent pattern mining in data mining is the process of
identifying patterns or associations within a dataset that
occur frequently. This is typically done by analyzing large
datasets to find items or sets of items that appear together
frequently.

different algorithms used for frequent pattern mining,

1. Apriori algorithm: This is one of the most
commonly used algorithms for frequent pattern
mining. It uses a “bottom-up” approach to identify
frequent itemsets and then generates association
rules from those itemsets.

2. ECLAT algorithm: This algorithm uses a “depth-
first search” approach to identify frequent
itemsets. It is particularly efficient for datasets
with a large number of items.

3. FP-growth algorithm: This algorithm uses a
“compression” technique to find frequent patterns
efficiently. It is particularly efficient for datasets
with a large number of transactions.

4. Frequent pattern mining has many applications,
such as Market Basket Analysis, Recommender
Systems, Fraud Detection, and many more.

Advantages:

1. It can find useful information which is not visible
in simple data browsing

2. It can find interesting association and correlation
among data items

Disadvantages:

1. It can generate a large number of patterns
2. With high dimensionality, the number of patterns

can be very large, making it difficult to interpret
the results.

Frequent item set
A frequent item set is a set of items that occur together
frequently in a dataset. The frequency of an item set is
measured by the support count, which is the number of
transactions or records in the dataset that contain the item
set. For example, if a dataset contains 100 transactions
and the item set {milk, bread} appears in 20 of those
transactions, the support count for {milk, bread} is 20.

the min sup threshold, a hyper-parameter with high importance, which has to be

set carefully by the user according to their expectations of the results:

• Setting it to a very low value would give a large number of itemsets that would
be too specific to be considered “frequent”. These itemsets might apply in too

few cases to be useful.

• On the other hand, very high values for min sup would give a small num-
ber of itemsets. These would be too generic to be useful. Thus, the resulting

information would probably not represent new knowledge for the user.

Another important aspect of the min sup value is whether the number of

frequent itemsets that results is small enough for subsequent analysis.

Apriori

Apriori is an algorithm for frequent item set mining and association rule
learning over relational databases. It proceeds by identifying the frequent

individual items in the database and extending them to larger and larger

item sets as long as those item sets appear sufficiently often in the

database.

Algorithm Apriori.

1: INPUT the transactional dataset
2: INPUT min_sup the minimum support threshod

3: Set k = 1

4: Set stop = false

5: repeat

6: Select all frequent itemsets of length k (with support at least min_sup)

7: if there are no two frequent itemsets of length k then

8: stop = true

9: else

10: Set k = k + 1

 11: until stop

Components of Apriori algorithm

The given three components comprise the apriori algorithm.

1. Support

2. Confidence

3. Lift

Support

Support refers to the default popularity of any product. You find

the support as a quotient of the division of the number of

transactions comprising that product by the total number of

transactions. Hence, we get

Support (Biscuits) = (Transactions relating biscuits) / (Total

transactions)

= 400/4000 = 10 percent.

Confidence

Confidence refers to the possibility that the customers bought both

biscuits and chocolates together. So, you need to divide the

number of transactions that comprise both biscuits and chocolates

by the total number of transactions to get the confidence.

Hence,

Confidence = (Transactions relating both biscuits and Chocolate) /

(Total transactions involving Biscuits)

= 200/400

= 50 percent.

= 400/4000 = 10 percent.

Lift

Consider the above example; lift refers to the increase in the ratio

of the sale of chocolates when you sell biscuits. The mathematical

equations of lift are given below.

Lift = (Confidence (Biscuits - chocolates)/ (Support (Biscuits)

= 50/10 = 5

The Apriori Algorithm makes the given assumptions

o All subsets of a frequent itemset must be frequent.

o The subsets of an infrequent item set must be infrequent.

o Fix a threshold support level. In our case, we have fixed it at

50 percent.

Advantages of Apriori Algorithm

o It is used to calculate large itemsets.

o Simple to understand and apply.

Disadvantages of Apriori Algorithms

o Apriori algorithm is an expensive method to find support since

the calculation has to pass through the whole database.

o Sometimes, you need a huge number of candidate rules, so it

becomes computationally more expensive.

ECLAT algorithm

The ECLAT algorithm stands for Equivalence Class
Clustering and bottom-up Lattice Traversal. It is one of the
popular methods of Association Rule mining. It is a more
efficient and scalable version of the Apriori algorithm. While
the Apriori algorithm works in a horizontal sense imitating
the Breadth-First Search of a graph, the ECLAT algorithm
works in a vertical manner just like the Depth-First Search
of a graph.

Advantages over Apriori algorithm:-
1. Memory Requirements: Since the ECLAT

algorithm uses a Depth-First Search approach, it
uses less memory than Apriori algorithm.

2. Speed: The ECLAT algorithm is typically faster
than the Apriori algorithm.

3. Number of Computations: The ECLAT algorithm
does not involve the repeated scanning of the
data to compute the individual support values.

https://en.wikipedia.org/wiki/Association_rule_learning

FP Growth Algorithm?

The FP-Growth Algorithm is an alternative way to find frequent

item sets without using candidate generations, thus improving

performance. For so much, it uses a divide-and-conquer strategy.

The core of this method is the usage of a special data structure

named frequent-pattern tree (FP-tree), which retains the item set

association information.

This algorithm works as follows:

o First, it compresses the input database creating an FP-tree

instance to represent frequent items.

o After this first step, it divides the compressed database into

a set of conditional databases, each associated with one

frequent pattern.

o Finally, each such database is mined separately.

